C3 Integration

1. June 2010 qu. 4

The diagram shows part of the curve $y=\frac{k}{x}$, where k is a positive constant. The points A and B on the curve have x-coordinates 2 and 6 respectively. Lines through A and B parallel to the axes as shown meet at the point C. The region R is bounded by the curve and the lines $x=2, x=6$ and $y=0$. The region S is bounded by the curve and the lines $A C$ and $B C$. It is given that the area of the region R is \ln 81.
(i) Show that $k=4$.
(ii) Find the exact volume of the solid produced when the region S is rotated completely about the x-axis.
2. June 2010 qu. 7

The diagram shows the curve with equation $y=(3 x-1)^{4}$. The point P on the curve has coordinates (1, 16) and the tangent to the curve at P meets the x-axis at the point Q. The shaded region is bounded by $P Q$, the x-axis and that part of the curve for which $\frac{1}{3} \leq x \leq 1$. Find the exact area of this shaded region.
3. Jan 2010 qu. 1

Find $\int \frac{10}{(2 x-7)^{2}} \mathrm{~d} x$.
4. Jan 2010 qu. 3
(i) Find, in simplified form, the exact value of $\int_{10}^{20} \frac{60}{x} \mathrm{~d} x$.
(ii) Use Simpson's rule with two strips to find an approximation to $\int_{10}^{20} \frac{60}{x} \mathrm{~d} x$.
(iii) Use your answers to parts (i) and (ii) to show that $\ln 2 \approx \frac{25}{36}$.
5. Jan 2010 qu. 6

Given that $\quad \int_{0}^{\ln 4}\left(k \mathrm{e}^{3 x}+(k-2) \mathrm{e}^{-\frac{1}{2} x}\right) \mathrm{d} x=185, \quad$ find the value of the constant k.
6. June 2009 qu. 2

The diagram shows the curve with equation $y=(2 x-3)^{2}$. The shaded region is bounded by the curve and the lines $x=0$ and $y=0$. Find the exact volume obtained when the shaded region is rotated completely about the x-axis.
7. June 2009 qu. 4

It is given that $\int_{a}^{3 a}\left(\mathrm{e}^{3 x}+\mathrm{e}^{x}\right) \mathrm{d} x=100$, where a is a positive constant.
(i) Show that $a=\frac{1}{9} \ln \left(300+3 \mathrm{e}^{a}-2 \mathrm{e}^{3 a}\right)$.
(ii) Use an iterative process, based on the equation in part (i), to find the value of a correct to 4 decimal places. Use a starting value of 0.6 and show the result of each step of the process.
8. Jan 2009 qu. 1

Find
(i) $\int 8 \mathrm{e}^{-2 x} \mathrm{~d} x$,
(ii) $\int(4 x+5)^{6} \mathrm{~d} x$.
9. Jan 2009 qu. 8

The diagram shows the curve with equation

$$
y=\frac{6}{\sqrt{x}}-3
$$

The point P has coordinates $(0, p)$.
The shaded region is bounded by the curve and the lines
$x=0, y=0$ and $y=p$.
The shaded region is rotated completely about the y-axis to form a solid of volume V.
(i) Show that $V=16 \pi\left(1-\frac{27}{(p+3)^{3}}\right)$.
(ii) It is given that P is moving along the y-axis in such a way that, at time t, the variables p and t are related by $\quad \frac{\mathrm{d} p}{\mathrm{~d} t}=\frac{1}{3} p+1$. Find the value of $\frac{\mathrm{d} V}{\mathrm{~d} t}$ at the instant when $p=9$. [4]
10. June 2008 qu. 6

The diagram shows the curves $y=\mathrm{e}^{3 x}$ and $y=(2 x-1)^{4}$. The shaded region is bounded by the two curves and the line $x=\frac{1}{2}$. The shaded region is rotated completely about the x-axis. Find the exact volume of the solid produced.
11. Jan 2008 qu. 5
(a) Find $\int(3 x+7)^{9} \mathrm{~d} x$.
(b)

The diagram shows the curve $y=\frac{1}{2 \sqrt{x}}$. The shaded region is bounded by the curve and the lines $x=3, x=6$ and $y=0$. The shaded region is rotated completely about the x-axis. Find the exact volume of the solid produced, simplifying your answer.
12. June 2007 qu. 4

The integral \boldsymbol{I} is defined by $\quad \boldsymbol{I}=\int_{0}^{13}(2 x+1)^{\frac{1}{3}} \mathrm{~d} x$.
(i) Use integration to find the exact value of \boldsymbol{I}.
(ii) Use Simpson's rule with two strips to find an approximate value for \boldsymbol{I}. Give your answer correct to 3 significant figures.
13. June 2007 qu. 6
(i) Given that $\int_{0}^{a}\left(6 \mathrm{e}^{2 x}+x\right) \mathrm{d} x=42$, show that $a=\frac{1}{2} \ln \left(15-\frac{1}{6} a^{2}\right)$.
(ii) Use an iterative formula, based on the equation in part (i), to find the value of a correct to 3 decimal places. Use a starting value of 1 and show the result of each iteration.
14. June 2007 qu. 8
(i) Given that $y=\frac{4 \ln x-3}{4 \ln x+3}$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{24}{x(4 \ln x+3)^{2}}$.
(ii) Find the exact value of the gradient of the curve $y=\frac{4 \ln x-3}{4 \ln x+3}$ at the point where it crosses the x-axis.
(iii)

The diagram shows part of the curve with equation

$$
y=\frac{2}{x^{\frac{1}{2}}(4 \ln x+3)} .
$$

The region shaded in the diagram is bounded by the curve and the lines $x=1, x=\mathrm{e}$ and $y=0$. Find the exact volume of the solid produced when this shaded region is rotated completely about the x-axis.
15. Jan 2007 qu. 6

The diagram shows the curve with equation $y=\frac{1}{\sqrt{3 x+2}}$. The shaded region is bounded by the curve and the lines $x=0, x=2$ and $y=0$.
(i) Find the exact area of the shaded region.
(ii) The shaded region is rotated completely about the x-axis. Find the exact volume of the solid formed, simplifying your answer.
16. June 2006 qu. 7
(a) Find the exact value of $\int_{1}^{2} \frac{2}{(4 x-1)^{2}} \mathrm{~d} x$.
(b)

The diagram shows part of the curve $y=\frac{1}{x}$. The point P has coordinates $\left(a, \frac{1}{a}\right)$ and the point Q has coordinates $\left(2 a, \frac{1}{2 a}\right)$, where a is a positive constant. The point R is such that $P R$ is parallel to the x-axis and QR is parallel to the y-axis. The region shaded in the diagram is bounded by the curve and by the lines $P R$ and $Q R$. Show that the area of this shaded region is $\ln \left(\frac{1}{2} \mathrm{e}\right)$.
17. June 2006 qu. 9

The diagram shows the curve with equation $y=2 \ln (x-1)$. The point P has coordinates $(0, p)$. The region R, shaded in the diagram, is bounded by the curve and the lines $x=0, y=0$ and $y=p$. The units on the axes are centimetres. The region R is rotated completely about the \boldsymbol{y}-axis to form a solid.
(i) Show that the volume, $V \mathrm{~cm}^{3}$, of the solid is given by $V=\pi\left(\mathrm{e}^{P}+4 \mathrm{e}^{\frac{1}{2} P}+p-5\right)$.
(ii) It is given that the point P is moving in the positive direction along the y-axis at a constant rate of $0.2 \mathrm{~cm} \mathrm{~min}^{-1}$. Find the rate at which the volume of the solid is increasing at the instant when $p=4$, giving your answer correct to 2 significant figures.
18. Jan 2006 qu. 1

Show that $\int_{2}^{8} \frac{3}{x} \mathrm{~d} x=\ln 64$.
19. Jan 2006 qu. 5

The diagram shows the curves $y=(1-2 x)^{5}$ and $y=\mathrm{e}^{2 x-1}-1$. The curves meet at the point $\left(\frac{1}{2}, 0\right)$. Find the exact area of the region (shaded in the diagram) bounded by the y-axis and by part of each curve.
20. June 2005 qu. 4
(a)

The diagram shows the curve $y=\frac{2}{\sqrt{x}}$. The region R, shaded in the diagram, is bounded by the curve and by the lines $x=1, x=5$ and $y=0$. The region R is rotated completely about the x-axis. Find the exact volume of the solid formed.
(b) Use Simpson's rule, with 4 strips, to find an approximate value for $\int_{1}^{5} \sqrt{ }\left(x^{2}+1\right) \mathrm{d} x$, giving your answer correct to 3 decimal places.

